

Vigas de Transição Apoiadas Sobre Pilares Com Dimensões Reduzida: Análise da Região de Apoio pelo Método das Bielas e Tirantes Nelson de Castro Junior¹, Lucas Diemer Ramires², Fabrício Longhi Bolina³ ¹Unisinos – Universidade do Vale do Rio dos Sinos / ncastrojunior@yahoo.com.br ²Unisinos – Universidade do Vale do Rio dos Sinos / lucasramires@yahoo.com.br ³Unisinos – Universidade do Vale do Rio dos Sinos / fabriciolb@unisinos.br

Resumo

No tocante ao projeto das estruturas de concreto armado, a NBR 6118 (ABNT, 2014) não define a largura efetiva da viga quando ela se apoia em pilares com dimensões reduzidas, tal como destacado na figura 1, e também não define parâmetros a respeito da ancoragem das barras que não atravessam a seção do apoio. O objetivo deste trabalho é analisar o comportamento da estrutura na interface do apoio entre vigas de transição e pilares, propondo uma abordagem para dimensionamento dessas regiões. Para tanto, foram empregados modelos numéricos baseados em casos reais de projeto, os quais foram discretizados em elementos finitos. Por meio destes, determinou-se o campo de tensões na região de transferência da carga da viga para os pilares e, paralelamente, discorreu-se sobre o modelo de bielas e tirantes empregado nesses casos. Como resultado, concluiu-se que para propor modelos realistas de cálculo o entendimento da transferência de carga da viga para o pilar é fundamental, tanto como o emprego de métodos adequados para dimensionamento do concreto e das armaduras nas regiões de descontinuidade. Sugere-se também uma formulação baseada no código ACI-318 para determinação da largura efetiva das vigas na intersecção com pilares.

Palavras-chave

Vigas de Transição; Apoios Reduzidos; Bielas e Tirantes.

Introdução

Em edificações de concreto armado é comum a utilização de vigas com largura superior à largura dos pilares de apoio, principalmente em pavimentos com limitação do pédireito, quando busca-se compensar a redução da altura das vigas com aumento de sua largura (b_w), e nas vigas de transição que não encontram adequada disposição de apoios devido às limitações arquitetônicas.

Figura 1 - Viga de transição apoiada parcialmente sobre pilares.

Construtivamente, as vigas largas requerem menos formas, facilitam a repetição e reduzem o peso próprio da edificação, vantagens que se destacam no projeto de estruturas solicitadas por carregamentos gravitacionais.

Muitos países recomendam em suas normas ou códigos um limite para largura de vigas largas: o EUROCODE 8 limita a largura das vigas ao menor valor entre b_c+h_b e $2b_c$; o ACI-318 limita a largura das vigas ao menor valor entre $b_c+1,5h_b$ e $3b_c$; o código neozelandês NZS-3101 restringe a largura das vigas ao menor valor entre $b_c+0,5h_b$ e $2b_c$.

Figura 2 – Dimensões relativas de vigas e pilares.

A transferência do esforço cortante na ligação viga-pilar ocorre por meio de um mecanismo complexo, através da formação de bielas e tirantes na parte interna da viga. A verificação da diagonal comprimida denominada *biela 1* exige o conhecimento das dimensões $a_1 e b_1$.

Figura 3 – Dimensões notáveis do nó 1: planta baixa e corte.

A dimensão a_1 pode ser determinada conforme a equação abaixo, assumindo que o nó seja pseudo-hidrostático.

$$a_1 = \frac{V_d}{b_w \cdot f_{cd3}} \tag{1}$$

Através da modelagem numérica, este trabalho se propõe a definir a largura efetiva das diagonais comprimidas ($b_{w,ef}$) no caso de vigas muito largas e, a partir dessa definição, comparar a tensão calculada σ_{cd3} no nó 1 considerando b_w e $b_{w,ef}$, bem como comparar a área de aço ancorada em toda a região do apoio e aquela que atravessa apenas o campo de tensões de compressão com a área de aço necessária para atender à força F_{sd} definida no item 18.3.2.4 da NBR 6118 (2014).

Modelos numéricos

Os modelos foram discretizados a partir de elementos sólidos, conectados por nós com seis graus de liberdade, com auxílio do *software* STRAP[®].

Foram elaborados doze modelos numéricos: quatro baseados em situações reais e outros oito modelos a partir de variações na relação b_w/b_c destes casos. Os valores relativos à resistência do concreto, módulo de elasticidade do material e carga aplicada foram extraídos dos casos reais e mantidos constantes quando se variou a largura do pilar.

Foram aplicadas cargas nodais concentradas iguais a P/2 a uma distância $b_w/4$ da face da viga, seguindo o modelo de bielas e tirantes sugerido pelo FIB BULLETIN 2 (2011).

	Viga	Pilar				
Modelo	b _w x h _b	b _c x h _c	b_w/b_c	f _{ck} (MPa)	Ecs (GPa)	P (kN)
	(cm)	(cm)				
M1 (real)	60 x 80	20 x 60	3,0			
M1-a	60 x 80	30 x 60	2,0	30	27	1100
M1-b	60 x 80	40 x 60	1,5			
M2 (real)	60 x 60	30 x 40	2,0			
M2-a	60 x 60	40 x 40	1,5	30	27	360
M2-b	60 x 60	20 x 40	3,0			
M3 (real)	100 x 105	30 x 100	3,3			
M3-a	100 x 105	40 x 100	2,5	35	32	3400
M3-b	100 x 105	50 x 100	2,0			
M4 (real)	80 x 50	30 x 50	2,7			
M4-a	80 x 50	40 x 50	2,0	30	27	510
M4-b	80 x 50	50 x 50	1,6			

Tabela 1 – Geometria, especificações do concreto e carregamento

Figura 4 – Modelo de bielas e tirantes conforme FIB BULLETIN 2.

A partir do mapa das tensões principais de compressão foi definida a largura efetiva da viga $(b_{w,ef})$ considerando graficamente a soma da largura das bielas medida a uma altura correspondente ao eixo do tirante y/2, conforme figura 3.

Figura 5 – Corte transversal da seção do apoio para definição da largura efetiva conforme campo de tensões principais de compressão

A tabela abaixo apresenta um resumo da largura efetiva das vigas para diferentes relações b_w/b_c .

Modelo	b _w /b _c	b _w (cm)	b _{w,ef} (cm)	b _{w,ef} /b _w
M1 (real)	3,0	60	40	0,67
M1-a	2,0	60	50	0,83
M1-b	1,5	60	60	1,00
M2 (real)	2,0	60	50	0,83
M2-a	1,5	60	60	1,00
M2-b	3,0	60	40	0,67
M3 (real)	3,3	100	75	0,75
M3-a	2,5	100	80	0,80
M3-b	2,0	100	85	0,85
M4 (real)	2,7	80	60	0,75
M4-a	2,0	80	65	0,81
M4-b	1,6	80	80	1,00

Tabela 2 – Relação entre b _w e b _{w,ef} considerando difere

As tensões σ_{cd3} e σ_{cd3}^* foram calculadas considerando o nó 1 com largura igual a b_w e $b_{w,ef}$, respectivamente.

Modelo	a ₁ (cm)	b ₁ (cm)	f _{cd3} (MPa)	σ _{cd3} (MPa)	σ _{cd3} * (MPa)	$\begin{array}{c} \text{Verificação} \\ \sigma_{cd3} \leq f_{cd3} \end{array}$
M1 (real)	18,90	20,01	13,58	9,16	13,75	Não OK
M1-a	18,90	20,01	13,58	9,16	11,00	ОК
M1-b	18,90	20,01	13,58	9,16	9,16	ОК
M2 (real)	5,43	7,20	15,48	8,33	8,95	ОК
M2-a	5,43	7,20	15,48	8,33	8,33	OK

Tabela 3 – Tensão na biela 1 para diferentes dimensões do nó

9 a 11 de maio - Rio de Janeiro						
Modelo	a ₁ (cm)	b ₁ (cm)	f _{cd3} (MPa)	σ _{cd3} (MPa)	σ _{cd3} * (MPa)	$\begin{array}{c} \text{Verificação} \\ \sigma_{cd3} \leq f_{cd3} \end{array}$
M2-b	5,43	7,20	15,48	8,33	9,56	ОК
M3 (real)	30,75	31,65	15,48	10,74	10,88	ОК
М3-а	30,75	31,65	15,48	10,74	10,85	ОК
M3-b	30,75	31,65	15,48	10,74	10,83	ОК
M4 (real)	6,57	8,89	13,58	7,17	8,01	ОК
M4-a	6,57	8,89	13,58	7,17	7,80	ОК
M4-b	6,57	8,89	13,58	7,17	7,17	ОК

Na tabela 4 estão indicadas a área de aço ancorada no apoio e que atravessa o nó quando adotado nó com largura b_w ou $b_{w,ef}$, a área de aço mínima na seção do apoio conforme a NBR 6118 (2014) e a verificação se o valor calculado considerando apenas a largura efetiva atende à norma brasileira.

Modelo	A _{st} (cm ²)	A_{st}^* (cm ²)	A _{st,NBR} (cm ²)	$\begin{array}{l} Verificação \\ A_{stNBR} \leq A_{st}^{*} \end{array}$
M1 (real)	62,8	50,3	35,4	OK
M1-a	62,8	56,6	35,4	OK
M1-b	62,8	62,8	35,4	OK
M2 (real)	14,1	10,1	11,6	Não OK
M2-a	14,1	14,1	11,6	ОК
M2-b	14,1	10,1	11,6	Não OK
M3 (real)	138,2	106,8	109,5	Não OK
М3-а	138,2	113,1	109,5	OK
M3-b	138,2	119,4	109,5	OK
M4 (real)	31,4	18,9	16,4	OK
M4-a	31,4	25,1	16,4	ОК
M4-b	31,4	31,4	16,4	OK

Tabela 4 – Área de aço na seção de apoio considerando a largura efetiva da viga

Conclusões

A partir dos resultados dos modelos numéricos foi possível concluir que:

- 1. Para relação $b_w/b_c \le 2$ pode-se assumir $b_{w,ef} = b_w$;
- 2. A dimensão b_1 , correspondente à largura do nó 1, não pode ser considerada igual a b_w , visto que o campo de tensões de compressão não se espraia por toda a largura da viga quando $b_w > 2b_c$;
- 3. Quando $b_w > 2b_c$ é preciso avaliar a ancoragem das armaduras longitudinais dispostas fora do campo de compressões. Uma vez que essas barras de aço não atravessam o nó 1, não é possível assegurar a ancoragem das mesmas sem a consideração de outros mecanismos;
- 4. Quando $b_w > 2b_c$ recomenda-se que as armaduras longitudinais que chegam até o apoio e estejam dispostas fora da zona comprimida não sejam consideradas para atendimento do item 18.3.2.4 da NBR 6118 (2004), pelo mesmo motivo citado anteriormente;
- 5. Se a dimensão a_1 do nó pseudo-hidrostático for definida considerando $b_w = b_{w,ef}$, a tensão σ_{cd3} diminui. No entanto, o ângulo de inclinação da biela diminui e o comprimento de ancoragem disponível também reduz. No modelo 3, por exemplo, houve uma redução de até 6% no comprimento de ancoragem disponível.

Para compreender e definir principalmente o comportamento da armadura longitudinal que atravessa a seção do apoio, mas encontra-se fora da região comprimida, recomenda-se que sejam desenvolvidos estudos a partir de ensaios de modelos físicos, para definir os parâmetros e os mecanismos de ancoragem dessas barras.

Referências

- AMERICAN CONCRETE INSTITUTE. Examples for the Design of Structural Concrete with Strut-and-Tie Models. v. 318, 2002.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Projeto de estruturas de concreto Procedimento, NBR 6118. Rio de Janeiro: ABNT, 2014.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Ações e Segurança nas Estruturas Procedimento, NBR 8681. Rio de Janeiro: ABNT, 2003. p-18.
- BING, L.; SUDHAKAR, A. Seismic Behaviour of Reinforced Concrete Exterior Wide Beam-Column Joints. Journal of Strctural Engineering, 136, p.26-36, 2010.
- FILHO, A. C. Detalhamento das Estruturas de Concreto Armado pelo Método das Bielas e dos Tirantes. Porto Alegre: Caderno de Engenharia do Programa de Pós-Graduação em Engenharia Civil, 1996.
- FÉDERATION INTERNATIONALE DU BÉTON. Structural concrete Textbook on behaviour, design and performance. v. 2, 1990.
- FÉDERATION INTERNATIONALE DU BÉTON. Design examples for strut-and-tie models. v. 61, 2011.
- FUSCO, P.B. Técnica de armar as estruturas de concreto. São Paulo: Ed. Pini, 2003.
- GOODCHILD, C. H.; MORRISON, J & VOLLUM, R. L. Strut-and-Tie Models: How to design concrete members using strut-and-tie models in accordance with Eurocode 2. Londres: MPA The Concrete Centre, 2014.
- KUANG, J.S; KAM, W. S. Effect of Beam Dimensions on Structural Performance of Wide Beam-Column Joints. Advances in Structural Engineering and Mechanics (ASEM13), p.2651-2656, 2013.

- LEONHARDT, F. Construções de Concreto: Princípios básicos sobre a armação de estruturas de concreto armado. Rio de Janeiro: Ed. Interciência Ltda, v. 3, 1983.
- OWATSIRIWONG, A. Strut-and-Tie Modeling in Reinforced Concrete Structures: Basics and Applications. Tailândia, 2013.
- PASCUAL, P. Z. Herramienta de Cálculo por el Método de Bielas y Tirantes. Barcelona: Escola Politècnica Superior d'Edificació de Barcelona, 2014, p.10-11.
- SANTOS, D. M. Projeto de estruturas de concreto com auxílio de modelos de bielas e tirantes. São Paulo, 2014.
- SCHLAICH, J.; SCHAFER, K. & JENNEWEIN, M. Toward a Consistent Design of Concrete Structure. PCI Journal. v.32, 1987.
- SILVA, R. C. Concreto Armado: Aplicações de Modelos de Bielas e Tirantes. São Carlos: Dissertação de Mestrado, 1991.